Sensory Cells and Circuits Lab
About
Acting Lab Chief: David Shurtleff, Ph.D.
David Shurtleff, Ph.D., is the acting chief of the Sensory Cells and Circuits Lab. This lab is interested in how sensory input is detected and processed by the brain to evoke specific behaviors. Our work focuses on identifying peripheral somatosensory neurons tuned to specific types of stimuli, the molecules they use for transduction, and the neural circuits that they activate. Through our research we seek to understand the basis by which some stimuli are perceived as innocuous while others are perceived as noxious and how these distinctions are modulated by physiological state or prior experience. The hope is that improving our knowledge of these basic mechanisms will be useful in developing new therapeutic approaches for treating acute and chronic pain. Our lab uses mouse genetics, in vitro and in vivo electrophysiology, in vivo two-photon imaging, and behavior to study how sensory stimuli are detected and encoded. Together, these approaches help us to better understand the importance of specific molecules for the responses of defined classes of sensory neurons and to map neural pathways for touch and pain in the brain. In parallel, we have identified a cohort of patients with a rare inherited disorder affecting mechanosensation due to damaging mutations in the gene PIEZO2. Studying these patients helped define the role of this particular gene in human mechanosensation and allowed us to probe basic questions about the role select sensory inputs play in perception. Most importantly, working with these patients allows us to ask questions about human experience that, by definition, are impossible to answer using animal models. We are now positioned to take what we learn from these patients to guide our studies in mice and vice versa.
Acting Lab Chief
